Laser Nedir ?
Laser Teknolojisi tıp ve sanayi alanında kullanılmaya yönelik en son teknoloji olarak önemini korumaya devam etmektedir.
Genellikle bir yoğun ışık kaynağının, katı sıvı veya gaz halindeki aktif madde üzerine düşürülmesi ile bu maddelerin atomları tarafından emilir ve foton yayılımına yani radyasyona sebep olurlar. Bu yayılım yeniden foton oluşumunu teşvik eder ve optik-mekanik düzenekte yerleştirilmiş olan aynalar ve mercekler aracılığı ile odaklanarak kuvvetlendirilen bu fotonlar monokromatik, çizgisel, eşit dalgalardan oluşan paralel bir ışık veya ışın demeti yani Lazeri oluştururlar.
Sonuçta lazer tek renkli , düzenli, yoğun, aynı fazlı paralel dalgalar halindeki güçlü görünür ışık veya görülmeyen spektrumdaki ışın demetidir.

LASER ÇEŞİTLERİ VE KULLANIM ALANLARI
Tek renkli, oldukça düz, yoğun ve aynı fazlı paralel dalgalar halinde genliği yüksek güçlü bir ışık demeti üreten alet.
Laser İngilizce; Light Amplification by Stimulated Emission of Radiation (uyarılmış ışın neşriyle ışık kuvvetlendirilmesi) cümlesindeki kelimelerin baş harflerinin alınmasından türetilmiş bir kelimedir.
1960 senesinde ABD’de Theodore H. Maiman tarafından keşfedilmiştir. Normal ışık, dalga boyları muhtelif, rengarenk, yani farklı faz ve frekansa sahip dalgalardan meydana gelir. Laser ışığı ise yüksek genlikli, aynı fazda, birbirine paralel, tek renkli, hemen hemen aynı frekanslı dalgalardan ibarettir. Optik frekans bölgesi yaklaşık olarak bir trilyon hertz ile üç bin trilyon hertz arasında yer alır. Bu bölge, kırmızı ötesi ışınları, görülebilen ışınları ve elektromanyetik spektrumun morötesi ışınlarını kapsar. Buna karşılık mikro dalga frekans bölgesi yaklaşık olarak 300 milyon hertzden 300 milyar hertze kadar uzanır. Yani, laser çok yüksek frekanslarda çalışır.
Laserin önemi uygulamasının yaygın olmasında ve onun daha da genişlemesinin beklenmesinde yatmaktadır. Özellikle uygulamanın genişliği, ışınların frekansların hassas bir şekilde kontrolünden, yayılan ışının yayılma düzeninden veya ışınların olağanüstü yoğunluğundan kaynaklanmaktadır. Laser dolayısıyla, holografide, opektraskopide çok önemli gelişmeler ortaya çıkmıştır. Bunlar yoluyla laser diğer bilimsel ve teknolojik alanlarda da etkisini göstermektedir.
Laserin çalışma prensibi: Optik bakımdan saydam, bir ucunda tam sırlı ve yansıtıcı, diğer ucunda yarı sırlı kısmen yansıtıcı iki ayna bulunan bir tüp alınır. Buna gaz, sıvı ve katı bir madde doldurulur. Dışarıdan ışık verme, elektrik akımı geçirmek suretiyle veya kimyasal bir yolla elde edilen enerji, ortamdaki atomlara ulaşır. Bunların bazıları bu enerjiyi emerler. Fazla enerji, atomları kararsız hale getirir. Kendisine bir foton çarpan, uyarılmış ve kararsız atom, fazla enerjiyi foton neşrederek verir. Fotonlar, benzer şekilde diğer fotonların neşrini sağlar. Uçlara ulaşan fotonlar, aynalardan yansıyarak geri dönerler ve olay devam eder. Uyarma ve tahriklerde ortamdaki fotonlar artar. Atomların hemen hemen hepsi, foton yaymaya başlayınca kuvvetlenen ışık, yarı sırlı uçtan dışarı çıkar. Bu, laser ışınıdır. Laser dalgalarını, uygun adım giden aynı üniforma ve şekle sahip askerlere, normal ışığı ise rasgele karakteri bozuk bir orduya benzetmişlerdir. Normal ışıkta dalgalar, birbirini zayıflatıcı karakterde olmasına rağmen, laserde birbirini kuvvetlendirici olurlar. Laser ışınları yüksek frekanslı olduklarından güneş ışını özelliklerine sahiptir. Ancak laser ışınları tek frekanslı olduğu için kayıpları azdır. Ayrıca laser ışınları aynı fazda yapılan ışık dalgaları olduğu için şiddeti büyük olur. Bu yüzden laser ışınlarının şiddeti güneş ışınlarının şiddetinin bir milyon katıdır.
Elektromanyetik dalga paketçiği de denen foton, güneş ışığı füzyon reaksiyonuyla meydana gelip, bu şekilde yayılan foton enerjisidir. Laser ışında foton yayılmasından ibarettir. Laserde foton üretimini anlayabilmek için atomların değişik seviyelerinde ne gibi hadiseler olduğunu bilmek gerekir. Bir atomun uyarılmış durumda bulunduğu kısa zaman aralığında üzerine belli bir dalga boyunda foton düşürülürse, atom aynı fazda foton yayar. Bu işlem peş peşe tekrarlanırsa, tamamen aynı fazda bir ışın demeti elde edilir. En düşük enerji seviyesinde bulunan bir atoma dışarıdan bir foton verilirse, atom enerjisi kazanarak E1 enerji seviyesinden E2 enerji seviyesine uyarılmış olur. Bu atom kendi halinde bırakılırsa, uyarılmış bulunduğu E2 enerjisinden bir foton vererek tekrar E1 enerji seviyesine döner. Uyarılarak enerji seviyesi E1’den E2’ye yükseltilen atom enerjisini geriye foton olarak yaymaya başlarken bir foton daha çarptırılırsa atomu birbiri ile aynı özellikte iki foton terk eder. Bu şekilde atom kat kat enerji seviyelerine çıkarılırsa bu seviyelerden düşerken de katlar halinde foton ürer. Bu işlem iki paralel ayna arasında aynı fazda olan fotonların toplanması şeklinde devam eder. Laser ışını dalgasının dalga boyu aynalar arasındaki mesafe ile uyumludur. Aynı frekansta yani, aynı dalga boyunda yapılan foton üretimine uyarılmış yayılma işlemi denir. Milyonlarca atom için bu işlem yapılırsa aynı yöne doğru milyonlarca foton paralel ışınlar halinde bir noktadan yayılır. Bu ışınlar aynı fazda, aynı frekansta, aynı yönde olduklarından adeta birbirine yan yana yapışıktır. Paralel aynalar arasında şiddeti bu şekilde çığ gibi artan ışınlar, ışık frekansına eş bir frekansta, darbeler halinde oldukça parlak ışık huzmesi olarak yayılır. Laser ışınındaki enerjisinin büyümesinin esası işte bu milyonlarca küçük enerji kaynaklarının çok dar bir hüzme halinde aynı yönde ham yanyana hem de ard arda birleşmesi neticesidir. Laserin çalışması için enerji seviyesi düşen atomlarda daha fazla sayıdaki atomların uyarılacak enerji seviyelerine yükseltilmesi gerekir. Bu durum ise normal olarak atomların enerji seviyesi dağılımının tersidir. Bu sebepten laserin çalışması için gerekli durum tersine çevrilmiş dağılım olarak isimlendirilir. Tersine çevrilmiş dağılımı ortaya çıkarmak için pompalama işlemi kullanılır. Optik pompalama ise, yüksek frekanslı yoğun ışınların neşriyle yapılabilir. Yarı iletkenli laserlerde pompalama elektrik akımı yardımı ile gerçekleştirilir ve işlem elektriksel pompalama olarak isimlendirilir. Gaz laserlerinde ise pompalama işlemi elektron-atom veya atom-atom çarpıştırılmasıyla ortaya çıkarılır ve çarpışma pompalaması olarak bilinir. Kimyasal pompalama işleminde ise kimyasal laserlerde kimyasal reaksiyonlarla atom ve moleküller uyarılır. Gaz-dinamik laserlerde de pompalama ses hızı üstü gaz genişlemesi yoluyla gerçekleştirilir ve gaz genişleme pompalaması olarak isimlendirilir.

OSİLASYON
Yukarıda açıklanan tersine çevrilmiş dağılım elde edildikten sonra, bu ortamdan geçen ışık rezonans durumuna getirilir. Optik asilator olarak da isimlendirilebilecek bu ortam yansıma, kırılma ve diğer kayıpları karşılayacak durumda olmalıdır. Bu amaçla laser ortamı, uzunluğuna doğru bir parça şeklinde düzenlenir ve iki ucuna çok kuvvetli yansıtıcılar konarak ışının bunlar arsında ileri-geri yansıması sağlanır. Bu yansıtıcılardan biri bir ölçüde saydam yapılarak rezonans frekansına ulaşan ışının laser ışını olarak ortamından dışarı çıkmasını sağlar.
Q-Anahtarlaması
Çok kısa ve çok güçlü çıkışlar q-anahtarlaması kullanılarak depo edilmiş laser ışınlarından elde edilebilir. Bu tür teknikte yansıtıcılardan biri pompalama aralığının bir kısmında yansıtmayacak şekilde düzenlenir. Daha sonra yansıtıcı hale getirilir. Bu düzenleme sonucu pompalama devresinin bir kısmında depo edilen enerji diğer kısmında büyük bir darbe olarak yayılır. Q-anahtarlamasının en kolay şekli bir aynanın çok hızlı dönmesiyle gerçekleştirilebilir. Bu aynanın diğer ayna ile aynı eksene geldiği zaman da laser yayılımı ortaya çıkar. Bu konuda uygulanabilecek diğer teknik laser frekansına ışık absorbe eden seyreltilmiş bir çözelti ortamı kullanmaktır. Bu şekildeki absorbsiyon enerjinin depo edilmesini sağlar.
Mode kilitlenmesi
Çözelti kullanılarak ve anahtarlama ile elde edilen laser ışınının gücü mode kilitlenmesi ile daha da arttırılabilir. Böyle bir durumda birbirine yakın ve aralarında belirli bağıntının bulunduğu “kilitli” frekanslarda aynı zamanda titreşim meydana gelir. Böylece çok daha kısa zamanda yüz trilyon watt’a yaklaşan bir güç elde edilir ki, bu dünyadaki bütün elektrik santrallerinin toplam üretiminden daha fazladır.
Laser ışınının özellikleri:
En büyük özelliği dağılmaz olması ve yön verilebilmesidir. Bu özelliğinden istifade ile mesafe ölçme ve fiber optik teknolojisi geliştirilmiştir. Dalga boyunun küçük olması dağılmayı da büyük ölçüde azaltır. Uyarılan atomlar her yön yerine belli yönlerde hareket ederler. Bu laserin çok parlak olmasını doğurur.
Laser ışını, dalga boyu tek olduğundan monokromatik özellik taşır. Frekans dağılım aralığı, frekansının bir milyonda biri civarındadır. Bu sebepten istenilen frekansta çok sayıda dalgalar laser dalgası üzerine bindirilmek suretiyle haberleşmede iyi bir sinyal jeneratörü olarak iş görür. Aynı anda birçok bilgi bir yerden başka yere gönderebilir.
Laser ışını dağılmaz olduğundan kısa darbeler halinde yayınlanabilmesi mümkündür. Kayıpsız yüksek enerji nakli yapılması bu özelliği ile sağlanabilir. Laser kendisinde bulunan yüksek enerji sayesinde kesme, kaynak ve delme endüstrisinde kullanılır. Ayrıca laser darbesinin çok kısa olmasından yüksek hız fotoğrafçılığında faydalanılır. Yönlü bir hareket olmasından ise holografi ve ölçüm biliminde yararlanılır. Bütün özellikleri ile uzak mesafe ölçümlerini mümkün kılar.
Laser ışını tek dalga boyuna sahip olduğu için laser cinsine göre çeşitli renkte ışınlar elde etmek mümkündür.